Unconditional bases and strictly convex dual renormings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gruenhage Compacta and Strictly Convex Dual Norms

We prove that if K is a Gruenhage compact space then C (K) admits an equivalent, strictly convex dual norm. As a corollary, we show that if X is a Banach space and X∗ = span|||·|||(K), where K is a Gruenhage compact in the w∗-topology and ||| · ||| is equivalent to a coarser, w∗-lower semicontinuous norm on X∗, then X∗ admits an equivalent, strictly convex dual norm. We give a partial converse ...

متن کامل

Schauder bases under uniform renormings

Let X be a separable superreflexive Banach space with a Schauder basis. We prove the existence of an equivalent uniformly smooth (resp. uniformly rotund) renorming under which the given basis is monotone. Mathematics Subject Classification (2000). 46B03.

متن کامل

Dual renormings of Banach spaces

We prove that a Banach space admitting an equivalent WUR norm is an Asplund space. Some related dual renormings are also presented. It is a well-known result that a Banach space whose dual norm is Fréchet differentiable is reflexive. Also if the the third dual norm is Gâteaux differentiable the space is reflexive. For these results see e.g. [2], p.33. Similarly, by the result of [9], if the sec...

متن کامل

Unconditional Bases and Unconditional Finite-dimensional Decompositions in Banach Spaces

Let X he a Banach space with an unconditional finite-dimensional Schauder decomposition (En). We consider the general problem of characterizing conditions under which one can construct an unconditional basis for X by forming an unconditional basis for each En. For example, we show that if sup,, dim En < c~ and X has Gordon-Lewis local unconditional s t ructure then X has an unconditional basis ...

متن کامل

Cores of convex and strictly convex games

We follow the path initiated in Shapley (1971) and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal’s triangle. JEL classification: C71.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2009

ISSN: 0024-6093

DOI: 10.1112/blms/bdp059